
Creating a Multi-Robot Stage Production

Junyun Tay1,2, Somchaya Liemhetcharat3 and Manuela Veloso1

1Carnegie Mellon University, USA
2Nanyang Technological University, Singapore

3Institute for Infocomm Research, Singapore

Abstract. A multi-robot stage production is novel and challenging as different
robots have to communicate and coordinate to produce a smooth performance.
We made a multi-robot stage production possible using the NAO humanoid robots
and the Lego Mindstorms NXT robots with a group of undergraduate women
who had programming experience, but little experience with robots. The under-
graduates from around the world were participating in a three day workshop –
Opportunities for Undergraduate Research in Computer Science (OurCS), orga-
nized by the School of Computer Science from Carnegie Mellon University that
provide opportunities for these undergraduates to work on computing-related re-
search problems. They were given twelve and a half hours over a span of three
days to familiarize themselves with the robots, plan the storyboard of the per-
formance, program the robots, generate a multi-robot performance and create a
presentation on what they learned and did. In this paper, we describe the tools and
infrastructure we created to support the creation of a multi-robot stage production
within the allocated time and explain how the time in the workshop was allocated
to enable the undergraduates to complete the multi-robot stage production.

1 Introduction

A successful multi-robot stage production is extremely difficult, especially when differ-
ent robot platforms are used and multiple robots have to communicate and coordinate
with little human intervention to produce a coherent performance. Using multiple robot
platforms for a performance requires familiarity of the robots’ capabilities and a good
understanding of how to program the robots. Manually controlling each robot individ-
ually requires a lot of practice between humans and is too tedious especially when the
robots have multiple degrees of freedom, e.g., the NAO humanoid robot has 21 degrees
of freedom. Automating the behaviors of the robots, multi-robot communication and
coordination are crucial to the synchronization of the robots’ performance. In this pa-
per, we explain how we created tools, used existing infrastructure, and describe our plan
to support such an endeavor.

OurCS is organized to provide opportunities for undergraduate women to have a
chance to work on computing-related problems and attend talks to learn about life in
graduate school. We wanted to enable the participants to have a chance to work with
multiple robots and different robot platforms within the short period of time that they
were given. We conceived the idea of a multi-robot stage production, but no script was
provided to the participants. The participants were allowed to exercise their creativity,



2

yet at the same time, were limited by the capabilities of the robots. Hence, without a
strong understanding of the robot’s hardware and software constraints, they would be
unable to produce an entertaining multi-robot stage production. The participants were
asked to sign up for the project beforehand and assigned to the research project based
on available slots. At the end of the workshop, the participants had to produce a 5-8
minutes stage production and presentation to share what they learned.

We chose two robot platforms – the Lego Mindstorms NXTs and the NAO hu-
manoid robots (Fig. 1). The Lego Mindstorms NXTs are commercially available in
stores, but not the NAO humanoid robots as they are much more expensive. The NAO
humanoid robots are not configurable, unlike the Lego Mindstorm NXTs, but are more
complex in the number of degrees of freedom. To enable the Lego Mindstorms NXTs
to communicate one another, we used the XBee radios, which is not packaged with the
Lego Mindstorms NXT set. Having these two robot platforms allow the participants
to have a unique experience that is difficult to get elsewhere. We also aimed to ensure
that every participant has a chance to work on each robot platform and learn about the
individual hardware and software capabilities. The Lego Mindstorms NXTs were al-
ready constructed with a arm that can rotate, wheels to move around and XBee radios
to communicate with one another. Extra software functions were written in RobotC to
enable the NXTs to send messages to one another so as to communicate. For the NAO
humanoid robot, external software functions were written to allow motions to be easily
synchronized with speech, music and LEDs in the eyes of the NAO humanoid robot.
We planned our tools and infrastructure such that the participants were able to use these
software functions to create a performance that allow the robots to communicate with
one another, synchronize the motions of the robots with text-to-speech or music and
change the LEDs of the NAO humanoid robots.

All the participants had programming experience, but only some had experience
with the Lego Mindstorms NXTs. None of them had worked with the NAO humanoid
robot. At the end of the workshop, all of them had a chance to work on all the robots
and put together an entertaining and informative eight-minute presentation to explain
what they learned and did. We successfully enabled a group of undergraduates with
little experiences with robots to create a multi-robot stage production in twelve and a
half hours using two NAO humanoid robots and three Lego Mindstorms NXT robots.
In this paper, we share the process and work done to support such an endeavor. It is rare
to see opportunities for participants to experience working on multiple robots, let alone
different robotic platforms, specifically Lego Mindstorms NXTs and NAO humanoid
robots in our case. Careful planning is needed to allow the group of participants to
complete a multi-robot stage production within a short period of time and to gain useful
insights about multi-robot coordination and communication, lessons that can never be
learned with a single robot.

In Section 2, we review what others have done in the area of educational robotics.
Next, in Section 3, we describe the preparations we made to facilitate learning of multi-
ple robot platforms, multi-robot communication and coordination within a short period
of time. We explain the rationale and the inner workings behind the tools and infrastruc-
ture created so that the participants can focus on creating the motions and behaviors of
the robots based on the storyboard they planned and use abstractions of robot functions



3

(a) NAO humanoid robot: 21 rotational
joints; LEDs in the eyes; speakers in the
ears; text-to-speech.

(b) Lego Mindstorms NXT robot: Two
motors for the wheels; one motor for the
arm; XBee communication module; in-
ternal speaker.

Fig. 1: Robots and their features. Images are not to scale.

without in-depth knowledge of the code for multi-robot communication and coordi-
nation. Following that, in Section 4, we list the learning objectives and the activities
that we planned out for the participants to enable them to effectively learn about the
hardware and software of the robots. In Section 5, we recount the actual day-to-day ac-
tivities of the participants. Lastly, we outline what the participants learned and discuss
our insights from the planning to the implementation and execution of the multi-robot
stage production in Section 6.

2 Related Work

Carnegie Mellon Robotics Academy developed materials to teach concepts and lessons
for multi-robot communications [2], using robot platforms such as LEGO Mindstorms
NXT, the VEX Robotics VEX Cortex and the Arduino family of processors and ROBOTC.
ROBOTC was used as the programming language as ROBOTC can be used for these
robotic platforms with little to no changes in the code. Avanzato discussed the use
of low-cost educational robot platforms and high-level software support for existing
educational robot platforms based on the materials from Carnegie Mellon Robotics
Academy [1]. Avanzato also described a “multi-robot design challenge for a regional
robot contest, multi-robot classroom and laboratory activities, and a programmable con-
troller for multi-robot communication are presented” [1]. Specifically, four autonomous
mobile robots, comprising one NXT and three VEX robots were designed and imple-
mented to cooperatively explore a maze with the goal of extinguishing multiple candles
that were randomly located [1].

Lego Mindstorms has always been used as a educational tool to teach robotics due to
its low cost and simplicity. Casini et al. have developed a remote laboratory for multi-
robot systems using LEGO Mindstorms NXT technology [3]. Remote users can de-
sign control laws in Matlab and test them by performing experiments remotely using
the team of robots available in the experimental setup. There is a global vision sys-
tem, which “simulates different types of sensors and communication architectures” [3].
Users will only be able to remotely control the NXTs robots but not interact with the
robots directly. Others used software such as LabView [5]. Franklin and Parker pro-
posed “Overwatch as an inexpensive educational tool for teaching and experimenting



4

in multi-robot systems” [4] and used Scribblers as the robot platform to experiment
with a multi-robot system [4]. McLurkin et al. proposed using Rice r-one mobile robots
for multi-robot curriculum and described the courses that they implemented using their
platform [7] to teach multi-robot concepts. Others used e-pucks which are designed
for education in engineering [8]. Many robotic platforms and software have been de-
veloped for multi-robot education. All these robot platforms are mostly low cost and
less complex than humanoid robots. By using the Lego Mindstorms NXT and the NAO
humanoid robots, we allow the participants to have a unique experience with two very
different robot platforms in terms of hardware and software.

3 Preparations

In this section, we describe the tools and infrastructure we prepared before the work-
shop to support the multi-robot stage production. The tools and infrastructure were built
upon previous work and described in Section 3.1 for the NAO humanoid robots and in
Section 3.2 for the Lego Mindstorms NXT robots.

3.1 NAO Humanoid Robots

Fig. 2: Specifics of the Cognitive Agent

Our RoboCup team, CMurfs (Carnegie Mellon United Robots For Soccer) [6], par-
ticipated in the RoboCup Standard Platform League competition using the NAO hu-
manoid robots to play soccer. We show the Cognitive Agent, a part of our RoboCup
code architecture, which processes the Robot State and generates a Robot Command.
A Robot Command comprises a Motion Command (e.g., walk, perform a motion), a
Speech Command (to be used by the text-to-speech engine), and an LED command (to
display colors on the robot). More details of our code architecture can be found in [6].
Fig. 2 shows the various components of the Cognitive Agent, namely:

– Agent Manager is a component that passes the information between components.
– Game State Manager is used to update the game state based on the messages re-

ceived from the Game Controller, as well as button presses on the NAO robot. The



5

Game Controller is used in a game in the Standard Platform League of RoboCup
to synchronize the game state across all NAO robots in the game. The game state
consists of states such as the start of the game, penalty shot etc.

– Vision receives the camera images and analyzes the images to determine features
such as ball, lines, goal posts, robots etc. that are important in the game.

– Localization determines the global position and orientation of the robot in the game
using features from Vision and odometry based on motion commands.

– World Model keeps track of the robot’s hypotheses of the ball and the information
shared by the other robots (teammates).

– Behaviors generate robot commands based on the features and information avail-
able and also determine the messages to send to teammates. In order to make deci-
sions, Behaviors is built on a Finite State Machine (FSM) model, which is described
in detail in Section 4.2. A FSM is made up of several states and the transitions be-
tween states are based on the conditions programmed.

– Log allows messages to be sent across the network to a Remote Display Client.
This component is useful for debugging the states and information available on all
the robots.

– Communications is in charge of sending and receiving messages between robots
and a Remote Display Client.

Each component has their own input and output interfaces and allows us to easily
configure the use of each component. We can easily enable and disable components
based on the needs. This flexible and configurable architecture enables us to use the
code from our RoboCup team as the functionalities we require to support the a multi-
robot stage production exist. We disable the use of the Game Stage Manager, Vision,
Localization, World Model and Log in the workshop. The rest of the components enable
us to achieve the following: (1) communication between the NAO robots; (2) ability to
execute motions; (3) set the LEDs in the eyes; (4) text-to-speech capabilities.

Fig. 3: Snapshot of the Puppet Master UI (left) and the list of commands sent (right).

We replaced the Game Manager with a new component, called the Puppet Master.
We created a “puppet master” program, OurCS Command, shown in Fig. 3, where the
participants could use the computer to send messages to the robots to start or stop
behaviors of the robots via a user interface shown in Fig. 3. The user interface shown in
Fig. 3 reads in a list of commands from a text file before it starts up. These commands
can be selected and sent to all the robots as messages. The robots that can receive the



6

messages are listed in the list of robots shown in Fig. 3. The list of robots and the IP
addresses of the robots can also be configured via another text file. The participants can
also debug the states of the FSM running in the robots. We used UDP communication
between OurCS Command and the NAOs, but the message protocol was abstracted
from the students. In this way, the students focused on creating messages and how the
messages influenced the FSM transitions between states, without worrying about how
the messages were transmitted from the computer to the robot. We also added specific
robot-robot and computer-robot messages so that the NAOs and the Puppet Master can
communicate the states in the FSM.

We also created a component that automatically exports motions from Choregraphe
into a format compatible with our RoboCup code. Choregraphe is a piece of software
created by Aldebaran Robotics, the manufacturer of the NAO humanoid robot, that
allows users to easily generate motions on the NAO. We will explain in detail how
Choregraphe is used in Section 4.1.

To enable the participants to program the NAO to execute motions, play a wave
file, use the text-to-speech capabilities, and change the LED colors in the eyes simul-
taneously, we created a function wrapper: MacroAction(Motion, TextToSay, WaveFile-
Name, LeftEyeColor, RightEyeColor). In this way, the students could focus on creating
behaviors (sequences of macro actions) for the performance, without having to handle
synchronizing different types of actions or multiple threads and processes on the NAO.
The students also do not have to send 4 separate commands and can use the function
wrapper instead.

Algorithm 1 Snippet of sample code showing a FSM and MacroAction in action
1: if fsm.inState(Part1F) then
2: if fsm.isNewState() then
3: // assumes that the actionListStatus = UnLoaded
4: actionList1F.clear()
5: MacroAction tempAction(StaticAction::actShakeHead, ”Terrible moves, N X T”, ””,

0xFF0000, 0xFF0000, Action::BothEyes)
6: if MY ROBOT NAME == ROBOT1 then
7: actionList1F.push back(tempAction)
8: end if// Thse two lines must be included to load MacroActions
9: currentActionList = &actionList1F

10: actionListStatus = Loaded
11: else
12: if actionListStatus==UnLoaded then
13: // loaded the action list and executing
14: if commandToExecute==”Part2T” then
15: // commandToExecute is the command sent by Puppet Master
16: fsm.trans(Part2T, ”Done with Part1F”)
17: continue
18: end if
19: end if
20: end if
21: end if



7

We prepared two laptops to be used with two NAO robots respectively. We installed
NaoQi, Choregraphe and our RoboCup code on the laptops. We also prepared sample
code to illustrate how the FSM and MacroAction classes can be used. The participants
can refer to these code or edit the code to suit their needs. The sample code is shown in
Algorithm 1.

3.2 Lego Mindstorms NXT Robots

We previously created curriculum for students at the K-12 level to learn about multi-
robot concepts using a variety of robot platforms such as the Lego Mindstorms NXT.
We used ROBOTC, a programming language that can be compiled and downloaded
to different platforms with little or no changes. Therefore, for the multi-robot stage
performance, the participants could code in RobotC to actuate the robot and to pass
messages from one robot to another. We built upon their experiences and curriculum
developed for multi-robot communication and synchronization of motions. The lessons
that we will use are described in detail later. We built two Lego Mindstorms NXT with
three wheels where two are actuated and an actuated arm which can rotate.

4 Planning of day-to-day activities

In this section, we describe the day-to-day activities that we planned for the participants.
We formed three groups of students where two groups work on the NAO robots and one
group works on the NXT robots. The groups are formed based on the participants’
interest. Each group is also led by a mentor, who is proficient in the robot platform and
software. We plan to spend about four hours per day with the participants. On Day 2,
we swap the groups so that everyone has a chance to work on the NAO and NXT robots.

4.1 Day 1

At the start of the day, we gave an introduction of the task – a multi-robot stage produc-
tion. We gave a general overview of the hardware available on the NAOs and NXTs.
We explained that the robots are limited in terms of perception because we disabled
the use of sensors such as cameras, ultrasound sensors etc on the NAOs, except touch
sensors on the NXTs. The use of cameras and vision are too complex and do not help
the participants to learn about multi-robot communication and coordination.

Next, we explained the use of actuators and degrees of freedom of a robot. We
highlight that the NAO robot is more complex in terms of the number of degrees of
freedom where the NAO has 21 degrees of freedom whereas the NXT has 3 degrees of
freedom. The NAO robot also has more sensors such as cameras, ultrasound, gyroscopes
and accelerometer, touch sensors such as chest buttons and foot bumpers, LEDs in the
eyes and text-to-speech capabilities. Though the Mindstorm NXT set includes many
sensors such as light sensors, ultrasound sensors, we only added touch sensors to the
NXTs that we built.

Following that, we break the participants into three groups, so that two groups will
work on creating motions on the NAO robot and one group will work on creating mo-
tions on the NXT. At the end of the day, the participants should create a basic outline
of the stage production. We described what we teach the participants in detail.



8

Choregraphe - Creating Motions on a single NAO robot To generate a motion on
the NAO, we introduced the concept of a keyframe (static pose) and interpolation time
shown as a timeline to create animated motions on the NAO (Figure 4). A motion is
made up of several keyframes and timings to interpolate between keyframes are also
defined. We taught the students how to use Choregraphe, a software to create motions
easily provided by Aldebaran Robotics, the manufacturer of the NAO. We explained
that robots have angular joint limits and maximum joint angular velocities that cannot
be exceeded. The angular joint limits are shown in Choregraphe with sliders for each
joint and the end of each slide of the slider shows the minimum and maximum joint
angle. We also taught the participants how to record each static pose as a keyframe and
create a sequence of motions.

Stability of a humanoid robot is extremely important as compared to a wheeled
robot, especially if the NAO humanoid falls, since the cost of repairing the NAO hu-
manoid robot is high. Therefore, we emphasized the balance of the NAO humanoid
robot. We attached a harness to the NAO humanoid robot when the participants create
motions so that they can hold on to the robot and ensure that it doesn’t fall.

Fig. 4: Choregraphe

Commands to actuate a Lego Mindstorm NXT We first taught how motions on the
NXTs are generated by actuating each motor independently at different speeds, and
provided sample code of basic motions. The students then created new motions such as
moving in an arc, and spinning the NXT’s “arm”.

We then introduced how the NXTs could communicate using the XBee radios. We
explained the concept of using a common language, so that the robots understood mes-
sages that were sent and received.

The students implemented a sequence of actions on two NXTs, where they sent
messages to each other and took turns executing actions. Next, the students created a
follow-the-leader sequence, where one robot would select a random action, inform the
other robot, and both robots would execute the same action together. Thus, the students
successfully understood the basics of multi-robot communication and coordination.

To synchronize the motions on the NXTs with the storyboard of the multi-robot
stage production, the students also used a “puppet master” to switch action sequences
within the NXTs. Within each sequence of actions, the NXTs communicated to take
turns performing actions, and synchronize to perform identical actions together.



9

4.2 Day 2

For Day 2, the participants learn how to convert the motions of the NAO robot to
code. They will also learn about Finite State Machine and to use the function wrapper,
MacroAction. The participants also learn about multi-robot communication, specifi-
cally how to pass messages between the NAOs and the Puppet Master and how to pass
messages between the NXTs. We did not prepare code to send messages between NAOs
and NXTs as we believe that the participants will be able to pick up multi-robot com-
munication concepts from what we already prepared.

Finite State Machine A finite state machine (FSM) enables them to implement their
storyboard: (1) A FSM has a finite number of states and the story can be broken down
into sequential steps; (2) The transition from one state to another is initiated by a trigger-
ing event or condition, e.g., a message received by the NAO from the “puppet master”
(explained below), or the end of a sequence of motions. We also created code templates
and sample code to provide examples on how to use our code, so that they could easily
create behaviors for the NAOs without worrying about the code syntax. Although we
provided the functionality of enabling message-passing between robots, the undergrad-
uates did not use them as they decided to use the “puppet master” program to coordinate
the robots. The participants had to code in C++, but were provided code templates as
examples to follow.

Based on the curriculum and code developed for multi-robot communication, we list
the lessons from [redacted] and summarized the multi-robot communication lessons:

1. Message Passing: To communicate, the robot must be able to send and receive a
message that comprise a string of limited number of characters. Relaying messages
from one robot to another is not as simple as it looks. It requires the robot to send a
message repeatedly to ensure that the message is received using the function void
SendStringRepeated. When a message is sent as a string, the robot must be able to
check if a message exists and read the message.

2. Guaranteed message delivery: To ensure that a message is sent and received, we
have a function called SendStringConsistently(string toSend) where a message (string
called toSend) is guaranteed to be sent and received by the recipients. We have an-
other function SendSTringConsistentlyTo(string id, string toSend) where the string
toSend is sent to the robot with the identified defined in string id.

3. Condition to initiate a motion: In multi-robot coordination, it is common for one
robot to wait for a message to be received from another before a motion is initiated.

4. Map a message string to a action: After we teach the participants how to actuate
the robot, we teach the participants about mapping a string to an action. The string
can be sent from one robot to another as a message and once the string is received,
the robot can be actuated to perform an action (motion). This lesson is built on the
previous three lessons.

5. Parameterized message string to action: Instead of defining fixed actions (motions)
to be performed, we can parameterize the action. For example, for the robot to
rotate by a certain number of degrees, we can pass the parameter 45 in the message
so that the robot will rotate by 45 degrees.



10

4.3 Day 3

For Day 3, we plan to allow time for the participants to finish working on their stage
production and do a full rehearsal before their presentation. We emphasize the impor-
tance of practice at the venue as behaviors of the robots may differ at the venue due to
different conditions such as texture of carpet, causing variations in the motions. Also,
the participants will have to practice their presentations and to synchronize the actions
between the NAOs and the NXTs since there was no message passing between the
NAOs and the NXTs. The NAOs can be synchronized via commands sent from the
Puppet Master and the NXTs can be synchronized via commands sent from a computer
or messages sent from another NXT.

5 Actual day-to-day activities

We describe the day-to-day activities that actually happened during the workshop. The
participants only spent a few hours each day working on the robots as they had other
talks and activities scheduled. We divided them into three groups and each group of
participants is led by a mentor, who is familiar with the robot platform and software.
Each group of participants only has 2-3 students. The participants had no script to fol-
low except that the task was to produce a multi-robot stage performance. Hence, the
participants had to learn, plan and execute a multi-robot performance using the NXTs
and the NAOs and summarize what they learned in a presentation within 5 to 8 minutes.

5.1 Day 1

On the first day, the participants spent four hours and forty-five minutes working on the
robots. They familiarized themselves with the NAOs and NXTs and created motions on
the robots. Lastly, the participants discussed and designed an outline of the multi-robot
stage production. They found the music for the production and created motions for the
stage production. They came up with the idea of a NAO tai-chi master teaching another
NAO and two NXTs tai-chi. The robots then end with the Macarena dance.

5.2 Day 2

On the second day, the participants spent four hours working on the robots. The par-
ticipants created a detailed outline and wrote them on the whiteboard (Fig. 5). Later,
the participants refined the timeline to determine the timings of each event in the stage
production and is listed here:

1. Introduction (30 seconds)
2. Tai chi master / student practice (90 seconds)
3. Tai chi demonstration by the two NAOs and the Lego NXTs (60 seconds)
4. Explanation of the NAOs (60 seconds)
5. Explanation of the NXTs (60 seconds)
6. Macarena (60 seconds)



11

Fig. 5: Snapshot of Script

After the participants planned the storyboard, they assigned responsibilities to each
team member, such as the sections to present in the PowerPoint presentation. Following
that, we taught them the concept of a finite state machine and multi-robot communi-
cation concepts such as how to pass messages from one robot to another. The partici-
pants created motions for the Macarena dance and also learned about incorporating the
keyframe motions they created into the code. They also learned how to use the function
wrapper MacroAction and how to check for messages from the Puppet Master. The par-
ticipants also swapped groups to learn about another robot platform that they did not
learn on Day 1.

At the end of the day, the participants showed a demonstration of the motions cre-
ated for the NAOs and the NXTs. However, the NAO-to-NXT communications had not
been implemented, hence they sent commands to each robot type independently.

5.3 Day 3

On the third day, the participants spent three hours and forty-five minutes working on
the robots. The participants finished the Tai Chi demonstration and added the Macarena
dance into code. They also produced a PowerPoint presentation explaining what they
learned. They also had to practice synchronizing the commands sent from the NAO and
NXT Puppet Masters so that the robots appear synchronized in their performance.

6 Conclusion

The participants learned a lot from the workshop, which included all the concepts we
wanted to impart in terms of multi-robot communication and coordination. They also
learned a new model – Finite State Machine – and found them easy to apply in the
workshop to initiate different states based on the messages sent. They also learned that
creating stable motions for a humanoid robot is extremely difficult. Walking and moving
legs apart such as sliding the legs across the floor is intuitive and easy for humans,
but difficult to achieve using keyframe motions. They also learned that sliding legs
apart for a humanoid robot on different carpet textures is difficult, hence they created a
motion that lifts one leg up slightly before putting the leg down to create a sliding leg



12

motion. They also learned that rehearsals are important as the behaviors of the robot
may differ in different environments. They had to edit the motions of the robot due
to the differences in carpet textures at the presentation venue. The feedback from the
participants were that they learned a lot from these experiences with multiple robots and
some wanted to continue pursuing graduates studies in robotics. One of the participants
even spent a summer with us working on RoboCup.

In this paper, we addressed the challenges of enabling undergraduates with little
robotic experience to create a multi-robot stage production in twelve and a half hours.
We described how the time was structured and how concepts and the software infras-
tructure were abstracted so that the students focused on the stage production. We di-
vided the concepts we wanted to teach into manageable sizes, and students can apply
what they learned immediately. The concepts were easy to understand based on their
prior programming experiences. The students could also be creative in generating a
script for the performance which keeps them motivated as they were involved from the
planning to the execution of their plan. Hence, by sharing our experiences and how we
prepare for this workshop to support a multi-robot stage production in a short amount
of time, we hope that others can learn from our experiences.

Acknowledgments

We thank Brian Coltin for his guidance of the students who participated in the work-
shop. Junyun Tay is part of the NTU-CMU Dual PhD Programme in Engineering
(Robotics) which is funded by the Economic Development Board of Singapore. The
views and conclusions contained herein are those of the authors only.

References
1. Avanzato, R.L.: Multi-robot communication for education and research. In: 2013 ASEE An-

nual Conference. ASEE Conferences (2013), https://peer.asee.org/22304
2. Carnegie Mellon Robotics Academy: Multi-Robot Communications, http://www.cs2n.

org/activities/multi-robot-communications
3. Casini, M., Garulli, A., Giannitrapani, A., Vicino, A.: A lego mindstorms multi-robot setup in

the automatic control telelab. In: In Proceedings of 18th IFAC World Congress. p. 2 (2011)
4. Franklin, D.M., Parker, L.E.: Overwatch: An educational testbed for multi-robot experimen-

tation. May 22-24, St. Pete Beach, FL (2013)
5. de Gabriel, J.M.G., Mandow, A., Fernndez-Lozano, J., Garca-Cerezo, A.: Using lego nxt mo-

bile robots with labview for undergraduate courses on mechatronics. IEEE Trans. Education
54(1), 41–47 (2011)

6. Liemhetcharat, S., Coltin, B., Tay, J., Veloso, M.: CMurfs 2011 Team Description Paper. In:
Proc. RoboCup 2011 CD (2011)

7. McLurkin, J., Rykowski, J., John, M., Kaseman, Q., Lynch, A.: Using multi-robot systems for
engineering education: Teaching and outreach with large numbers of an advanced, low-cost
robot. Education, IEEE Transactions on 56(1), 24–33 (Feb 2013)

8. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
christophe Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for educa-
tion in engineering. In: In Proceedings of the 9th Conference on Autonomous Robot Systems
and Competitions. pp. 59–65 (2009)


