
Learning Individual Motion Preferences From
Audience Feedback of Motion Sequences

Junyun Tay1,2, Manuela Veloso1 and I-Ming Chen2

Abstract— A robot performs a sequence of motions to ani-
mate a given input, e.g., dancing to music or telling a story. Each
input is pre-processed to determine labels, e.g., emotions of the
music or words in the story. Each label corresponds to multiple
motions, and each motion has multiple labels. Therefore, the
robot can choose one sequence from multiple motion sequences
to animate the input. We aim to choose the best sequence to
animate based on the audience’s preferences. The audience
prefers some motions over others, and each motion has an
initially unknown preference value. At the end of the motion
sequence, the audience provides feedback which is the sum of
the motions’ preference values. However, the observation of
the feedback is noisy due to the device used to capture the
audience’s feedback. To select the most preferred sequence, the
robot has to determine the sequence to query the audience
with, so as to learn the preference values of individual motions
from noisy observations of the audience’s feedback. By learning
the individual motion preference values, the most preferred
sequence can be determined. Moreover, the audience may get
bored of watching the same single motion in multiple sequences
and the preference value will degrade based on the number of
times the motion is viewed. We contribute MAK (Multi-Armed
bandit and Kalman filter) and show that MAK outperforms
least squares regression in selecting the best sequence with lower
degradation in our simulation experiments.

I. INTRODUCTION

A robot animates a pre-processed input signal with a
sequence of motions autonomously. For example, a robot
dances to music [1] or animates a story [2] autonomously.
Given a library of labeled motions where multiple motions
are mapped to a label, multiple motion sequences are feasible
to animate the input signal. In this paper, we aim to select the
sequence which is most preferred by the audience through
the feedback of some motion sequences.

Asking the audience to rate their preferences for all
sequences or all motions in the sequences is not feasible,
because the audience may get bored as they view the same
motions repeatedly. We model this effect with a degradation
factor based on the number of times a motion is viewed.

We assume that the audience feedback provided at the
end of a motion sequence is consistent and the feedback is
computed using the sum of the ratings of individual motions
in the sequence. However, the observation of the audience
feedback at the end of a motion sequence is noisy, i.e.,
the measurement using a device to capture the feedback is

1Junyun Tay and Manuela Veloso are with Carnegie Mellon
University, Pittsburgh PA, USA, junyunt@andrew.cmu.edu,
veloso@cs.cmu.edu

2Junyun Tay and I-Ming Chen are with Nanyang Technological
University, Singapore, junyunt@andrew.cmu.edu,
michen@ntu.edu.sg

noisy. For example, capturing the volume of the audience’s
claps via a microphone or capturing the audience’s feedback
via colored cues with a camera will be inaccurate due to
background noise such as chatting or some colored shirts.

Our approach – Multi-Armed bandit and Kalman filter
(MAK) is made up of two steps. First, we use a multi-
armed bandit algorithm to select the motion sequence to
query feedback on and a Kalman filter to estimate the ratings
of the individual motions using the feedback. We stop MAK
once the stopping conditions we defined are met and show
that we are able to determine the best sequence without going
through all possible sequences.

We compare our MAK approach against least-squares
regression, by using a black box that contains the ratings for
the individual motions in a simulation. Through simulation,
we ensure that the preference values of individual motions
do not vary except when degradation is considered and the
feedback of a particular motion sequence is consistent, but
observed with noise. Multiple motion sequences can express
the labels of the pre-processed input. However, we can
only query the black box with a sequence of motions and
receive a noisy rating of the sequence. We show that our
MAK approach outperforms the least-squares regression in
different scenarios, e.g., the audience degrades or does not
degrade the rating of a motion each time it is viewed.

II. RELATED WORK

Feedback from the audience ranges from using visual
cues such as the audience holding colored markers such as
paddles [3] or audio feedback such as the applause or cheers
from the audience or surveys at the end of the interaction
[4]. Knight et al. model the audience using the features of
jokes and selects the best joke for a robot to tell using the
audience feedback and the features of the joke [3]. We use
the feedback on sequences to model the ratings of individual
motions to select the most preferred motion sequence. Knight
et al. assume that the audience preference on features do
not vary over time, whereas we model the boredom of the
audience of viewing the same motion. Addo and Ahamed
also use a robot to tell jokes, but use reinforcement learning
[4]. However, to learn a good policy, they have to explore
all jokes in all the states, whereas we do not have to query
all motion sequences to pick the best sequence.

Abbeel and Ng introduce inverse reinforcement learning,
where the reward function is unknown and that it is difficult
to specify a reward function, but the “unknown reward
function can be expressed as a linear combination of known
features” [5]. Our approach is similar in the sense that the

audience rating of a sequence is expressed as a sum of the
unknown ratings of single motions. We also do not require
a Markov decision process made up of states and actions
to model the audience preferences and determine the best
policy for each state. Instead, we model the ratings of single
motions and account for noisy observations.

Akrour et al. explore the use of a Markov decision
process and rank sequences of state-action pairs based on
the preferences instead of assigning values to the sequences
[6]. We do not order preferences through ranking as the
magnitude of how much a sequence is preferred over another
sequence is lost in the ranking of sequences.

Our approach MAK uses the multi-armed bandit algorithm
and Kalman filter. The multi-armed bandit problem is a
well-known problem, where the goal is to select the arm
to pull to maximize the sum of expected rewards, and
Thompson sampling [7] is one of the common algorithms
used to optimize the arm-pulling. The multi-armed bandit
problem was recently applied to allocating training instances
to learning agents, so as to estimate their learning rates and
maximize the team performance [8], [9], and Kalman filters
were used to estimate the agents’ learning rates. In this paper,
we use a single Kalman filter to estimate the preference
values for single motions, and we use a multi-armed bandit
algorithm to select a motion sequence to query for feedback.

III. PROBLEM DESCRIPTION AND ASSUMPTIONS

In this section, we describe the motivating scenarios, and
present the formal problem definition and assumptions.

Motivating Scenario

Suppose that a humanoid robot is tasked with animating a
story. The story comprises sentences, where each sentence is
pre-processed for labels and the labels in each sentence can
be animated, e.g., in “John waved at the bird”, the words in
italics are labels that are be animated.

For each label in a sentence, there may be multiple mo-
tions that are applicable, e.g., to animate “waved”, the robot
can wave with its left/right arm, with its palm open/closed,
and move quickly/slowly. As such, for each sentence, there
are multiple unique sequences of motion that are feasible.

Each label-motion pair (e.g., “waved”-Wave Slowly With
Open Left Hand) has a unique audience preference value,
and as such, each sequence of motions for the sentence has
an audience preference value, summed over each motion
used in the sequence. Further, the audience preference value
may degrade each time the audience views a motion, as the
audience may get increasingly bored with seeing the same
motion multiple times. The goal is to select the sequence of
motions for the sentence with the highest audience preference
value, while minimizing the number of times the audience
is queried so that the degradation is minimal.

Formal Problem Definition

Each label can be mapped to multiple motions and each
motion can be mapped to multiple labels.

Definition 3.1: Let mk be the kth unique label-motion
pair, and M be the set of all label-motion pairs.

There exist different sequences of motions for the robot
to animate the input s, where the labels of the input match
the corresponding labels in the motions and the motions are
synchronized to the starting times of the labels in the input.

Definition 3.2: Let us = (m1, . . . ,mD) be an ordered set
of D label-motion pairs for a pre-processed input s, where
D ≥ 2. Let Us be the set of motion sequences for s.

Though the audience rates each motion sequence con-
sistently based on the motions used in the sequence, the
observation of the audience’s preference value of the se-
quence is noisy. The cost of querying the audience for
each motion used when there are many possible motions
is also higher. Moreover, the audience may get bored from
repeatedly viewing the same motion or the robot’s animation
for the same input. If the preference value for single motion
remains consistent across different inputs and we know all
the preference values for single motions, we are able to
determine the preference value for all motion sequences.

Definition 3.3: Let ak be the audience preference rating
of a label-motion pair mk. The audience rating of a sequence
of motions is A : Us → R+, where A(us) =

∑
mk∈us ak.

Definition 3.4: Let αi be the noisy observation of the
rating for sequence usi (the ith sequence for input s), i.e.,
αi ∼ N (A(usi), Rk) for some noise variance Rk.

The goal is to find the best sequence, i.e., argmaxi A(usi).
One approach would be to repeatedly try all possible

sequences multiple times to determine the best sequence and
account for the noise in the observation. However, there are
two issues. If there are many sequences, the audience may
get bored or refused to participate in rating the same input.
Moreover, if a motion is repeated in different sequences,
people get bored when viewing the same animation multiple
times and degrade the preference value for the motion based
on the number of times the motion is viewed.

As such, we define a model that simulates the effects
of boredom, when viewing a label-motion pair repeatedly.
We term it the degradation model, where the rating for an
individual label-motion pair in the sequence degrades by a
factor each time the individual label-motion pair is viewed.
This degradation to the rating means that the audience prefers
the individual label-motion pair a little less each time the
label-motion pair is seen.

Definition 3.5: Let the degradation factor be δ ∈ [0, 1].

Assumptions

• The rating for each label-motion pair is independent.
• The observation noise Rk is known.
• The degradation factor δ is known.

IV. TECHNICAL APPROACH

We model the problem as a multi-armed bandit, where
each arm represents a motion sequence. At each iteration, we
pull an arm and observe a noisy rating of the sequence. Next,
we use a Kalman filter to estimate the preference values of
the individual label-motion pairs by using the series of noisy
observations for different sequences over time.

We model the preference value of each label-motion
pair as a distribution with a mean and variance and term
preference value as the rating. The lower the variance of the
estimated rating (preference value), the more confident we
are about the mean (“true value”) of the rating.

Definition 4.1: Let ãi be the estimate of the rating of the
label-motion pair mi and the mean of the rating in our model.
Let ṽi be the variance of the estimated rating of the label-
motion pair mi. Let Ãt be the set of estimated ratings for
all label-motion pairs, M , at iteration t and Ṽt be the set of
variances for all label-motion pairs at iteration t.

The ratings of the individual label-motion pairs are mod-
eled as the state variables in the Kalman filter, and the
observation is the observed rating for the motion sequence.

At each iteration, we determine the motion sequence to
query (arm to pull) using Thompson Sampling, a multi-
armed bandit algorithm, which in turn uses the Kalman’s
estimated states to determine the rating of the sequence.
We repeat the process of choosing the motion sequence to
query using Thompson Sampling and update our estimates
of the individual ratings of the label-motion pairs using the
Kalman filter till we reach a stopping condition. We term our
approach “MAK” - Multi-Armed bandit and Kalman filter.

Definition 4.2: Let ãti be the estimated rating of the label-
motion pair mi at iteration t, where ãti ∈ Ãt . Let λi =
|ãti− ã

t−1
i | be the absolute difference between the estimated

rating of the label-motion pair mi at iteration t and t− 1.
Definition 4.3: Let ṽti be the variance of the label-motion

pair mi at iteration t, where ṽti ∈ Ṽ t . Let λvi = |ṽti − ṽ
t−1
i |

be the absolute difference between the estimate of the rating
of the label-motion pair mi at iteration t and t− 1.

MAK will stop when either of the following two condi-
tions is met: (1) the maximum iterations κ has occurred, or
(2) the maximum absolute change in the current estimated
rating of the label-motion pairs and the previous estimated
rating of the label-motion pairs is less than or equals to ε,
i.e., maxi(λi, λ

v
i) ≤ ε, where i ∈ {1, 2, . . . , |Ã|}.

MAK Algorithm

We present the algorithm for MAK in Algorithm 1. We
will discuss the initialization of Ã, Ṽ in the Experiments
section. Algorithm 1 uses both Algorithm 2 and Algorithm 3.

Algorithm 2 is a multi-armed bandit algorithm that de-
termines the sequence to query based on the means and
variances of the label-motion pairs, Ã, Ṽ . In Algorithm 2,
we use Thompson Sampling as an example.

Algorithm 3 uses the Kalman filter to estimate the rating
for each label-motion pair based on the noisy observation of
the rating of the label-motion pairs in sequence usc.

We illustrate how Algorithm 1 works with an input s
consisting of the following labels (l1, l2). There are four pos-
sible sequences – us1, u

s
2, u

s
3, u

s
4 with a motion library of four

label-motion pairs – m1 = (l1,m1),m2 = (l1,m2),m3 =
(l2,m3),m4 = (l2,m4). The sequences have the following
label-motion pairs:
• us1 = (m1,m3)
• us2 = (m1,m4)

Algorithm 1 Determine the best sequence u

MAK(Us, Ã, Ṽ)
t← 0
∆← Infinity
while (t ≤ κ) and (∆ > ε) do
Pt ← diag(Ṽ) // Pt is a diagonal matrix where the
values are the variances of the label-motion pairs
usc ← MAB(Us, Ã, Ṽ) // Algo. 2
αc ∼ N(A(usc), Rk) // αc is the noisy rating of usc
[Ãt, Ṽt]← Kalman(Ã, Ṽ , usc, αc, Pt) // Algo. 3
∆← maxi(λi, λ

v
i)

Ã← Ãt

Ṽ ← Ṽt
t← t+ 1

Algorithm 2 Determine the next sequence to query based
on the means and variances of the label-motion pairs using
a multi-armed bandit algorithm – Thompson Sampling

MAB(Us, Ã, Ṽ)

vmax ← 0
for i = 1 to | Us | do
vi ← 0
for j = 1 to | usi | do
vi ← vi + Random(ãj , ṽj) // Random samples from
a distribution with a mean, ãj and variance, ṽj

if vmax < vi then
vi = vmax
usmax ← usi

return usmax

Algorithm 3 Kalman filter where the states are the estimates
of the ratings of the individual label-motion pairs, Ã

Kalman(Ã, Ṽ , usc, αc, Pt)
Ft ← getStateTransition(IndicateLMUsed(usc), δ) // Ft is
a diagonal matrix, where 1 is for the label-motion pair(s)
not used in usc and δ for the label-motion pairs used in usc
x̂t|t−1 ← FtÃ // Predicted state estimates
Ht ← getObservationModel(IndicateLMUsed(usc)) // Ht

is a vector that indicates the label-motion pairs in usc
Pt−1|t−1 ← diag(Ṽ)
Pt|t−1 ← FtPt−1|t−1F

T
t // Predicted covariance estimates

ỹt ← αc −Htx̂t|t−1 // Innovation
st ← HtPt|t−1H

T
t +Rt // Innovation covariance

Kt ← Pt|t−1H
T
t S
−1
t // Optimal Kalman gain

x̂t|t ← x̂t|t−1 +Ktỹt // Updated state estimate
Pt|t ← (I −KtHt)Pt|t−1 // Updated estimate covariance
and I is an identity matrix
Ãt ← x̂t|t
Ṽ ← extractVariance(Pt|t)

return [Ã, Ṽ]

• us3 = (m2,m3)
• us4 = (m2,m4)

The estimated ratings of the label-motion pairs in our
model are Ã = (ã1, ã2, ã3, ã4) and we initialize the esti-
mated ratings to some values at the start. We also initialize
Ṽ with a large number since we are not confident about Ã.

Using Algorithm 2 where Thompson Sampling is used as
an example, we sample values using the function Random
that uses the model of the estimated rating of the label-
motion pairs – Ã and Ṽ . We compute the sum of these values
for each sequence and return the sequence with the highest
sampled value. Next, we observe a noisy audience rating,
αc, of the sequence usc using the function A.

We use the observation αc in Algorithm 3, where the
Kalman filter uses the observation to update the estimates of
the estimated ratings of the label-motion pairs in our model.

Different sequences are made up of different label-motion
pairs.The function IndicateLMUsed in Algorithm 3 takes in
a sequence usc and returns a vector whose values indicate
if the corresponding unique label-motion pair mi ∈ M is
used in the sequence usc. If the ith value in the vector is 1,
mi is used in the sequence usc, otherwise the value is 0. For
example, the function IndicateLMUsed(us1) returns a vector
with values

[
1 0 1 0

]
.

The state transition matrix Ft depends on the label-motion
pairs used in the sequence and the degradation factor δ. The
function getStateTransition returns a matrix Ft. If us1 is being

observed and δ = 1, Ft is


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. If us2 is being

observed and δ = 0.999, Ft is


0.999 0 0 0

0 1 0 0
0 0 1 0
0 0 0 0.999

.

Ht is the observation model which maps the true state
space into the observed space. Therefore, Ht depends on the
label-motion pairs used in the sequence. For sequence us3, the
function getObservationModel returns Ht =

[
0 1 1 0

]
.

We form a covariance matrix using the function diag where
the covariance matrix is a diagonal matrix, and the diagonals
are the respective ṽi ∈ Ṽ . Algorithm 3 updates the estimates
of the mean Ã and variance Ṽ for the unique label-motion
pairs. We use the function extractVariance to extract the
diagonals of the matrix Pt|t to determine Ṽ .

We use the function maxi(λi, λ
v
i) to determine ∆ and

update our model of Ã and Ṽ . We repeat these steps till
we reach the maximum number of iterations κ or ∆ ≤ ε.
The maximum number of iterations is defined by the user
and is less than the total number of possible sequences. The
maximum number of iterations is to terminate the algorithm
in the event that ε defined is too small.

V. COMPARISON – LEAST SQUARES REGRESSION

Given that we know the label-motion pairs used in each
sequence and the multiple noisy observations that we can
make for each sequence, we consider least squares regression

as the baseline comparison to estimate the ratings of the
individual label-motion pairs.

Least squares regression uses the equation Ax = B. x
is a |M | × 1 vector containing the list of ratings for each
label-motion pair. A is a n × |M | matrix that indicates the
label-motion pairs used in n observed sequences. B is a n×1
vector containing the noisy observations for n sequences.

Similarly, we illustrate least squares regression with the
same example for MAK, where the four possible sequences
are us1, u

s
2, u

s
3, u

s
4 and we have a motion library of four label-

motion pairs – m1,m2,m3,m4.

For this example, x =


ã1
ã2
ã3
ã4

.

When δ = 1 and we observe the four possible sequences

in order, A =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

.

If δ < 1, we keep track of the number of times the unique
label-motion pair is used. We define the number of times the
unique label-motion pair, mi is viewed as vi. Each row of A
will contain the values IndicateLMUsed(usc) · δmax(0,vi−1),
where i is the index of the label-motion pair in sequence usc.

Least squares regression estimates the rating of the in-
dividual label-motion pair in the event that there is no
observation noise of the audience preference of a sequence.
Given p unique motion labels, we need at least p sequences
that include all unique label-motion pairs to determine the
individual audience preference values. However, since the
observation is noisy, we will need at least 30p sequences
using the Central Limit Theorem in order to get a good
estimate of the ratings of the individual label-motion pairs.

Therefore, for least squares regression, we randomly pick
p sequences at the start of each trial. These p sequences
include all unique label-motion pairs so that the equations
formed are not under-constrained. Following that, to deter-
mine the next sequence to query, we select the sequence
usmax with the highest cumulative sum using the least squares
estimates of the ratings of the label-motion pairs. We obtain
a noisy observation of the rating αmax to add to B.

We continue adding rows to the matrix A and the vector
B till one of the two stopping conditions is met. The first
stopping condition is that the maximum iterations κ has
occurred and κ ≥ |M |, where |M | is the number of unique
label-motion pairs used in all possible sequences Us. The
second stopping condition is that the maximum absolute
change in the current estimated rating of the label-motion
pairs and the previous estimated rating of the label-motion
pairs is less than or equals to ε. The second condition uses
the equation maxi(λi) ≤ ε, where i ∈ {1, 2, . . . , |Ã|}.

VI. EXPERIMENTAL SETUP

We consider two models of the audience – Constant and
Degradation. Constant is the model where the rating of a
label-motion pair remains constant regardless of the number

of times the label-motion pair is viewed, so δ = 1. The
model, Degradation, is the model where the rating for a label-
motion pair degrades by a constant known factor each time
it is seen. Any value between 0 to 1 can be used for δ and
we set δ = 0.999 in our experiments.

To evaluate the performance of our approach, MAK,
versus the baseline comparison of least squares regression,
we created four labels with ten unique label-motions per
label, resulting in a total of forty unique label-motion pairs.
We also generated a black box where the ratings for the
unique label-motion pairs are uniformly randomly generated
from 0 to 100 and are hidden from our model of the ratings
of the label-motion pairs. The number of possible sequences
is based on the number of labels in the input if we assume
that there are 10 motions per label. For example, if there are
n labels, there are 10n possible sequences.

We query the black box for the audience rating using the
function A and return a noisy value that is computed based on
a sum of the ratings of the label-motion pairs in the sequence.
The noise added to the observation is Rk = 100. We used
the stopping conditions of κ = 100 and ε = 0.1.

We compared MAK against Least Squares regression for
each experiment and ran 30 trials for each experiment since
there is randomness in the sequences selected for queries. We
initialized each label-motion pair with ãi = 0 and ṽi = 1002.
We varied the following variables:
• Number of label-motion pairs in a sequence: We varied

the input by changing the number of label-motion pairs
in a sequence. We considered inputs with 2 label-motion
pairs, 3 label-motion pairs and 4 label-motion pairs.

• Audience model: We conducted experiments with the
two models – Constant where δ = 1 and Degradation
where δ = 0.999.

For numerical computations involving matrices, we used
GNU Octave. We used Octave’s lsqnonneq function for
least squares regression and the inputs are A, B and the
initial ratings for the label-motion pairs as the initial guess.

VII. EXPERIMENTAL RESULTS

Figure 1 shows the result for the experiment where each
sequence has two label-motion pairs with a Constant au-
dience model. The X axis shows the number of iterations.
The Y axis shows the average rating of the best motion
sequence for the corresponding approach at the tth iteration
and is averaged across 30 trials. The highest rating for
the best sequence in the black box is plotted with a black
dashed line and labeled as “Best”. Our approach, “MAK”,
is labeled in blue as compared to “LeastSquares” in red
using least squares regression. Figure 1 shows that “MAK”
performs better than “LeastSquares” in terms of finding the
best sequence as “MAK” converges to “Best”, whereas there
is a gap between “LeastSquares” and “Best”.

Next, we plot the result for the experiment where each
sequence has two label-motion pairs for the Degradation
audience model in Figure 2. The highest audience rating
for the best sequence in the black box using the approach
MAK is labeled as “MAKBest” and the highest audience

Fig. 1: MAK versus Least Squares for Constant Audience
Model

Fig. 2: MAK versus Least Squares For Degradation Audience
Model

rating for the best sequence in the black box using the
least squares approach is labeled as “LeastSquaresBest”. The
“Best” value is shown separately for MAK and Least Squares
as the number of times different label-motion pairs in the
best sequence is queried varies, therefore “MAKBest” and
“LeastSquaresBest” have different values.

In Figure 2, MAK degrades less than Least Squares
though they use the same degradation factor of 0.999, which
shows that MAK is able to account for the degradation
factor by selecting sequences that have different label-motion
pairs to learn the preference values for individual label-
motion pairs. Thus, MAK avoids revisiting the same label-
motion pair in the best sequence and “MAKBest” degrades
less than “LeastSquaresBest”. Figure 2 shows that “MAK”
converges to “MAKBest” after 57 iterations, where the
absolute difference in the average rating between “MAK”
and “MAKBest” is less than 1. “LeastSquares” does not
converge to “LeastSquaresBest” at all.

For the experimental results shown in Figure 1 and Fig-

ure 2, we stopped after 100 iterations instead of using the
stopping conditions we defined. By doing so, we showed that
our approach, MAK, performs better and we know that MAK
and Least Squares would converge before 100 iterations
shown by our empirical results. However, as we increase the
number of label-motion pairs in the experiments, we use the
stopping conditions defined so that we do not need to check
convergence empirically. Lastly, we present numerical results
for the experiments “Comparison of two / three / four label-
motion pairs” with the Constant and Degradation audience
model in Table I.

We define two measures in Table I:
Definition 7.1: Let the best sequence found by the re-

spective approach (either MAK or Least Squares) be û∗

and the best sequence in the black box be u∗. Let the
absolute difference between the estimated rating (the ratings
of the label-motion pairs in the model using the respective
approach) of û∗ and the true rating (the ratings of the label-
motion pairs in the black box) of û∗ be Υ. Let the absolute
difference between the true ratings of u∗ and û∗ be ρ.

For the experiment “Comparison of two / three / four label-
motion pairs”, we show in Table I that regardless of the
number of labels, MAK always finds the best sequence since
ρ is 0 for the constant audience model and ρ ≈ 0 for the
degradation model, but Least Squares is unable to find the
best sequence given that ρ > 0. The model of the ratings
of the individual label-motion pairs takes longer to converge
for MAK compared to Least Squares, but Least Squares is
unable to find the best motion sequence.

Since the number of iterations also refers to the number
of times sequences are queried and the number is much
less than the possible number of motion sequences for
two/three/four labels, we show that we do not have to
query all motion sequences for either MAK or least squares
regression.

VIII. CONCLUSION

We show that MAK selects the best motion sequence with-
out querying all possible motion sequences. MAK performs
better than least squares regression in terms of selecting
the best motion sequence and is capable of using noisy
observations of the ratings for different motion sequences
and consider degradation.

MAK takes more iterations than Least Squares to converge
but Least Squares is unable to find the best motion sequence.
Least Squares performs worse in the Degradation audience
model and continuously picks motion sequences with similar
label-motion pairs since LeastSquaresBest decreases as the
number of iterations increase. MAK considers degradation
given a Degradation audience model by selecting different
motion sequences and is able to find the best motion se-
quence.

Least Squares may perform better if we randomly choose
other motion sequences instead of the best motion sequence
known in the model to query, similarly to doing random
restarts to avoid getting stuck in local optimal. We note the
problem of getting stuck in local optimal is accounted for in

TABLE I: Performance of MAK versus Least Squares

Audience
Model

Label-
motion
pairs

Approach Iterations Υ ρ

Constant

2 MAK 70.3 ±
6.7

2.0 ±
1.4

0 ± 0

Least
Squares

33.2 ±
6.5

1.9 ±
1.2

3.8 ±
5.9

3 MAK 107.3 ±
9.2

2.0 ±
1.8

0 ± 0

Least
Squares

44.9 ±
6.4

2.8 ±
2.4

6.8 ±
10.8

4 MAK 162.3 ±
12.3

2.0 ±
1.6

0 ± 0

Least
Squares

56.5 ±
7.1

2.3 ±
2.0

3.9 ±
6.1

Degradation

2 MAK 70.0 ±
7.7

2.8 ±
1.9

0.2 ±
0.0

Least
Squares

38.4 ±
10.7

2.2 ±
2.0

2.8 ±
7.0

3 MAK 115.0 ±
11.7

1.8 ±
1.9

0.6 ±
2.1

Least
Squares

68.3 ±
32.1

1.6 ±
1.4

2.0 ±
5.4

4 MAK 172.4 ±
16.4

2.3 ±
1.8

1.1 ±
0.8

Least
Squares

81.1 ±
32.2

1.6 ±
0.9

4.0 ±
4.8

MAK as we model the confidence of the individual label-
motion pair’s rating.

ACKNOWLEDGMENTS

Junyun Tay is part of the NTU-CMU Dual PhD Pro-
gramme in Engineering (Robotics) which is funded by
the Economic Development Board of Singapore. We thank
Somchaya Liemhetcharat for his feedback. The views and
conclusions contained herein are those of the authors only.

REFERENCES

[1] G. Xia, J. Tay, R. Dannenberg, and M. Veloso, “Autonomous robot
dancing driven by beats and emotions of music,” in Autonomous Agents
and Multiagent Systems (AAMAS), vol. 1, 2012, pp. 205–212.

[2] J. Tay and M. Veloso, “Modeling and composing gestures for human-
robot interaction,” in IEEE Int. Symposium on Robot and Human
Interactive Communication (RO-MAN), 2012, pp. 107–112.

[3] H. Knight, S. Divvala, S. Satkin, and V. Ramakrishna, “A savvy robot
standup comic: Online learning through audience tracking,” in Fifth Int.
Conf. on Tangible, Embedded and Embodied Interaction, 2011.

[4] I. D. Addo and S. I. Ahamed, “Applying affective feedback to reinforce-
ment learning in zoei, a comic humanoid robot,” in IEEE RO-MAN,
2014, pp. 423–428.

[5] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Twenty-first Int. Conf. on Machine Learning, 2004.

[6] R. Akrour, M. Schoenauer, and M. Sebag, “APRIL: Active preference
learning-based reinforcement learning,” in Proceedings of the Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases, vol. 7524. Springer, 2012, pp. 116–131.

[7] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

[8] S. Liemhetcharat and M. Veloso, “Team formation with learning agents
that improve coordination,” in AAMAS, 2014, pp. 1531–1532.

[9] S. Liemhetcharat and M. Veloso, “Allocating training instances to
learning agents that improve coordination for team formation,” in
AAMAS workshop on Autonomous Robots and Multirobot Systems
(ARMS), ser. AAMAS ’14, 2014, pp. 1531–1532.

